Some bounds for the $\mathbb{A}$-numerical radius of certain $2 \times 2$ operator matrices
نویسندگان
چکیده
For a given bounded positive (semidefinite) linear operator $A$ on complex Hilbert space $\big(\mathcal{H}, \langle \cdot, \cdot\rangle \big)$, we consider the semi-Hilbertian \cdot\rangle_A \big)$ where ${\langle x, y\rangle}_A := Ax, y\rangle$ for every $x, y\in\mathcal{H}$. The $A$-numerical radius of an $A$-bounded $T$ $\mathcal{H}$ is by\[\omega_A(T)=\sup\Big\{\big|{\langle Tx, x\rangle}_A\big|\,;\,\, x\in\mathcal{H},\, {\langle x\rangle}_A=1\Big\}.\]Our aim in this paper to derive several $\mathbb{A}$-numerical inequalities $2\times 2$ matrices whose entries are operators, $\mathbb{A}=\text{diag}(A,A)$.
منابع مشابه
Further inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملSome bounds for the spectral radius of the Hadamard product of matrices∗
Some bounds for the spectral radius of the Hadamard product of two nonnegative matrices are given. Some results involve M -matrices.
متن کاملA NOTE VIA DIAGONALITY OF THE 2 × 2 BHATTACHARYYA MATRICES
In this paper, we consider characterizations based on the Bhattacharyya matrices. We characterize, under certain constraint, dis tributions such as normal, compound poisson and gamma via the diago nality of the 2 X 2 Bhattacharyya matrix.
متن کاملSome New Upper Bounds for the Spectral Radius of Iterative Matrices
In this paper, we present some new upper bounds for the spectral radius of iterative matrices based on the concept of doubly α diagonally dominant matrix. And subsequently, we give two examples to show that our results are better than the earlier ones. Keywords—doubly α diagonally dominant matrix, eigenvalue, iterative matrix, spectral radius, upper bound.
متن کاملEla Bounds for the Spectral Radius of Block H-matrices∗
Simple upper bounds for the spectral radius of an H-matrix and a block H-matrix are presented. They represent an improvement over the bounds in [T.Z. Huang, R.S. Ran, A simple estimation for the spectral radius of (block) H-matrices, Journal of Computational Applied Mathematics, 177 (2005), pp. 455–459].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe journal of mathematics and statistics
سال: 2021
ISSN: ['1303-5010']
DOI: https://doi.org/10.15672/hujms.730574